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Apolipoprotein E–Promoter Single-Nucleotide Polymorphisms Affect the
Phenotype of Primary Open-Angle Glaucoma and Demonstrate Interaction
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Primary open-angle glaucoma (POAG) is an optic neuropathy that has a high worldwide prevalence and that shows
strong evidence of complex inheritance. The myocilin (MYOC) gene is the only one that has thus far been shown
to have mutations in patients with POAG. Apolipoprotein E (APOE) plays an essential role in lipid metabolism,
and the APOE gene has been involved in neuronal degeneration that occurs in Alzheimer disease (AD). Here, we
report that two APOE-promoter single-nucleotide polymorphisms (SNPs) previously associated with AD also modify
the POAG phenotype. APOE(5219G) is associated with increased optic nerve damage, as reflected by increased
cup:disk ratio and visual field alteration. In addition, APOE(5491T), interacting at a highly significant level with
an SNP in the MYOC promoter, MYOC(51000G), is associated with increased intraocular pressure (IOP) and
with limited effectiveness of IOP-lowering treatments in patients with POAG. Together, these findings establish
APOE as a potent modifier for POAG, which could explain the linkage to chromosome 19q previously observed
by use of a genome scan for this condition and an increased frequency of glaucoma in patients with AD. The
findings also shed new light on potential mechanisms of optic nerve damage and of IOP regulation in POAG.

Primary open-angle glaucoma (POAG [MIM 137760])
is an optic neuropathy that affects 70 million people
worldwide and is defined by cupping of the optic nerve
head and irreversible loss of retinal ganglion cells (Quig-
ley 1993). It progresses insidiously and may lead to se-
vere visual impairment in some individuals. Elevation of
intraocular pressure (IOP) is recognized as a major risk
factor for damage to the optic nerve and for visual field
loss in POAG (Anderson 1989). The identification of the
TIGR (trabecular meshwork–inducible glucocorticoid
response) protein, also called “myocilin” (MYOC [MIM
601652]), has provided the first and, until now, the sole
genetic basis for study of the molecular mechanisms that
underlie IOP elevation (Adam et al. 1997; Polansky et
al. 1997; Stone et al. 1997; Nguyen et al. 1998). TIGR
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protein and MYOC gene expression are also abundantly
up-regulated in the trabecular meshwork in response to
steroids and oxidative stress (Polansky et al. 1997, 2000;
Tamm et al. 1999). Infusion of recombinant MYOC pro-
tein in the anterior chamber of human eyes in organ
culture increases outflow resistance and IOP (Fautsch et
al. 2000). The factors regulating the protein expression,
in addition to genetic alteration in its structure, may
therefore be important for understanding the molecu-
lar mechanisms related to the increased outflow resis-
tance in the trabecular meshwork that accounts for IOP
elevation.

It is well recognized that several still-to-be-determined
genes are likely to play substantial roles, alone or
through gene interactions, in both IOP elevation and
susceptibility to visual field loss. Among the unknown
factors are those that influence the physiological and the
pathological processes at the posterior segment of the
eye (Drance 1997; Martinez-Bello et al. 2000). In par-
ticular, genes influencing the retinal ganglion cell layer
or the optic nerve head are of interest because of their
potential ability to modulate predisposition to and pro-
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Table 1

Frequencies of APOE-Promoter Genotypes

APOE-Promoter SNP

No. (%) of
Patients

(n p 191)

No. (%) of
Control Subjects

(n p 102)

�491:
AA 129 (67.5) 70 (68.6)
AT 58 (30.4) 28 (27.4)
TT 4 (2.1) 4 (3.9)

�427:
CC 165 (86.4) 84 (82.4)
TC 25 (13.1) 17 (16.7)
TT 1 (.5) 1 (.98)

�219:
GG 57 (29.9) 38 (37.2)
GT 105 (54.9) 45 (44.1)
TT 29 (15.2) 19 (18.6)

Table 2

Association of APOE-Promoter SNPs with POAG Phenotypes

VARIABLE

APOE(�219) APOE(�491)

GG GT TT AA AT or TT

Age at inclusion (years) 59.4 � 15.6 (56)a 57.2 � 15.8 (105) 58.8 � 14.8 (28) 56.9 � 15.6 (127) 60.6 � 15.2 (62)
Age at diagnosis (years) 48.1 � 12.6 (54) 44.5 � 15.4 (100) 45.4 � 14.7 (27) 45 � 13.6 (123) 47.2 � 16.5 (58)
Length of observation (years)b 12.9 � 7.2 (53) 12.8 � 8.4 (100) 13.4 � 11.1 (27) 12.6 � 8.2 (122) 13.6 � 9 (58)
IOP at diagnosis (mmHg) 30.9 � 7.5 (48) 33.3 � 10.4 (86) 33 � 9.6 (21) 31.3 � 9 (112) 35.6 � 10.1 (43)c

IOP at inclusion (mmHg) 19.9 � 5.8 (56) 19.3 � 5.9 (97) 20.9 � 5.1 (28) 19.6 � 5.4 (125) 20 � 6.6 (56)
Visual field scored 3.2 � .8 (52) 3.3 � 1.1 (93) 2.6 � .9 (24)e 3.2 � 1 (118) 3.2 � 1 (51)
Cup:disk ratio (#10) 7.6 � 1.8 (51) 7.3 � 2.1 (86) 6.6 � 1.7 (26)f 7.3 � 2.1 (112) 7.3 � 1.7 (51)

a Mean � SD (number of patients).
b Time between diagnosis and inclusion in the study.
c with Student t test.P p .01
d Data obtained with different perimeters were combined using a five-point scale, defined as follows : 1 p no alteration; 2 p early defect;

3 p arcuate defect; 4 p advanced scotoma; 5 p light perception only or no vision (Brézin et al. 1997).
e for the comparison of the three genotypic groups by use of Kruskal-Wallis ANOVA; for the comparison of GG � GTP p .003 P p .0012

versus TT for Mann-Whitney U test.
f for the comparison of the three genotypic groups by use of Kruskal-Wallis ANOVA; for the comparison of GG � GTP p .04 P p .015

versus TT by use of the Mann-Whitney U test.

gression of POAG. The molecular nature of factors that,
alone and together, may modulate the glaucoma phe-
notype are of considerable research and clinical interest.

The findings reported here implicate apolipoprotein
E (APOE [MIM 107741]), an essential protein in lipid
transport (notably in the metabolism of neuronal
membrane [Mahley and Huang 1999]), as influencing
the glaucoma phenotype. APOE is up-regulated in re-
sponse to oxidative stress and is endowed with anti-
oxidant properties (Miyata and Smith 1996). Allelic
forms of APOE, including APOE protein alleles and pro-
moter single-nucleotide polymorphisms (SNPs), have
been associated with elevated plasma levels of choles-
terol, increased risk of myocardial infarction (Mahley
and Huang 1999; Lambert et al. 2000), and predispo-
sition to Alzheimer disease (Roses 1996; Bullido et al.
1998; Lambert et al. 1998). Although the mechanisms

by which APOE participates in different pathogenic pro-
cesses remain to be elucidated, APOE seems to be key
to neuronal degeneration and, beyond this, appears to
be involved in stress-induced injury that could affect
many tissues and organs.

To investigate a possible association of APOE poly-
morphisms with POAG, we identified a group of 191
unrelated white patients with POAG through retrospec-
tive chart review, according to a protocol described else-
where (Colomb et al. 2001). POAG was defined by the
conjunction of a characteristic cupping of the optic disk,
an open iridocorneal angle (grade III or IV gonioscopy),
and an alteration of the visual field, which was tested
by automated perimetry (with Humphrey’s perimeter or
Octopus). IOP was measured by applanation tonome-
try. Cup:disk ratios were assessed by individual clini-
cians. Patients with cataract or media opacities and those
with factors causally associated with secondary glau-
coma (including exfoliation, pigment dispersion, history
of trauma, surgery, and glucocorticoid exposure) were
excluded. Final POAG diagnosis was made at the time
of inclusion, after review of inclusion and exclusion cri-
teria. Diagnosis and other classifications were made sub-
stantially before the genotyping was conducted. All pa-
tients had been checked for the absence of the MYOC
coding region mutations—including G246R, Q368X,
P370L, I477S, N480K, I499F, and R272G—that have
been described elsewhere as being present in the French
population (Adam et al. 1997). The presence of a mu-
tation or of an unusual variant in patients carrying the
MYOC.mt1 marker (Colomb et al. 2001) was also ruled
out by direct sequencing of MYOC exon III, in which
the great majority of POAG-causing mutations were
mapped.



Reports 1577

Figure 1 Absolute and relative IOP changes in patients with
POAG, depending on MYOC(�1000C/G) and APOE(�491A/T) SNPs.
A, Bivariate distribution histograms of DIOP. B, Bivariate distribution
histograms of relative DIOP in the four genotypic groups defined by the
presence or absence of MYOC(�1000G) and APOE(�491T) alleles.

Three informative SNPs in the APOE promoter, at
positions �491, �427, and �219, were investigated,
along with the APOE protein alleles, e2, e3, and e4 (Lai
et al. 1998). As shown in table 1, the genotype fre-
quencies of the three SNPs were similar in patients with
POAG and in 102 control subjects, who were unaffected

spouses from families with MYOC-linked glaucoma.
Likewise, protein allele frequencies were similar in both
groups (data not shown). These frequencies were also
similar to those reported in a larger French control group
(Lambert et al. 2000).

We then evaluated a potential effect of these APOE
polymorphisms on the principal clinical parameters of
POAG. IOP measurements at diagnosis and at the time
of inclusion in the study were considered; cup:disk ratios
and visual field scores were used as indices of optic nerve
alteration. Values for the IOPs, the age at diagnosis, the
age at inclusion, and the length of observation (period
between age at inclusion and age at diagnosis), were
normally distributed, as verified with the D statistic of
Kolmogorov-Smirnov and with Shapiro-Wilk’s W test.
The means of these values in the various genotypic
groups were compared using Student t test or one-way
analysis of variance (ANOVA). If variance heterogeneity
was detected through the use of Levene’s test, then the
Student t test was performed after a separate estimate
of variances. To combine data from different quantita-
tive measurements of visual fields, we employed a se-
miquantitative five-point scale, as described elsewhere
(Brézin et al. 1997). Visual field evaluations and assign-
ments were made prior to genotyping. Visual field scores
and cup:disk ratios were compared using nonparamet-
ric procedures. Only two-sided P values !.05 were
reported.

As seen in table 2, the APOE(�219) SNP influenced
both the visual field score ( ) and the cup:diskP p .003
ratio ( ). The means of these two variables wereP p .04
similar in patients carrying one or two G alleles and
were higher than those in TT homozygotes. When GG
and GT patients were grouped, the fit of the data
( for visual field score and for cup:P p .0012 P p .015
disk ratio) improved. The TT genotype was reported
elsewhere to be associated with decreased plasma levels
of APOE and with an increased risk of myocardial in-
farction (Lambert et al. 2000). To our knowledge, the
present association suggests, for the first time, that visual
field and cup:disk ratio—two parameters that are com-
monly monitored to assess optic nerve damage in pa-
tients with POAG—might be specifically controlled, in-
dependently of IOP, by a genetic factor. It is relevant to
these observations that APOE is known to be expressed
in Müller cells, whose presence separates neural tissue
from retinal vasculature in the posterior part of the eye
(Shanmugaratnam et al. 1997; Klaver et al. 1998).
Müller cell processes envelop axons and ganglion cell
bodies and are thought to play an essential role in the
maintenance of the microenvironment of optic nerve fi-
bers. At the level of the optic nerve head, an essential
anatomical site in POAG pathogenesis, Müller cells are
replaced by astrocytes, a cell type in which expression
of APOE has been well documented (Poirier 1994; Bas-
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Table 3

Evolution of IOP Depending on MYOC.mt1 and on APOE(5491T)

MYOC.mt1/
APOE(�491T) N

Mean IOP at
Diagnosis � SD

(mmHg)

Mean IOP at
Inclusion � SD

(mmHg)
DIOPa � SD

(mmHg)
Relative DIOPb � SD

(%) Pc Pd

�/� 89 31.4 � 8.9 19.4 � 4.6 �12 � 9.8 �34.3 � 21 3 # 10�5 !1 # 10�12

�/� 34 35.1 � 10.2 18.7 � 4.6 �16.4 � 11.5 �42.5 � 20.2 3 # 10�5 1 # 10�6

�/� 20 32 � 10.1 21 � 7.2 �10.9 � 13.5 �27.9 � 31.4 3 # 10�4 3 # 10�3

�/� 5 35.4 � 7.1 35.2 � 7.9 �.2 � 8.2 �.7 � 21.7 NS NS

a DIOP between inclusion in the study and the diagnosis.
b DIOP divided by IOP at diagnosis.
c Post hoc comparison between IOP at diagnosis and IOP at inclusion in the study, with Tukey honest significant difference test,

after three-factor ANOVA.
d Wilcoxon matched-pairs test.

Table 4

Significance Levels from Analysis of Covariance and Interaction of MYOC.mt1 and
APOE(5491T)

DIOP RELATIVE DIOP

GENETIC FACTOR None
IOP at

Diagnosis Mean IOP None
IOP at

Diagnosis Mean IOP

MYOC.mt1 .003 1#10�9 2#10�7 7 #10�5 7 #10�8 2#10�6

APOE(�491T) NS 4#10�6 9#10�4 NS 5 #10�4 1#10�2

Interaction term .01 4#10�7 1#10�5 .003 9 #10�5 3#10�4

NOTE.—A two-way analysis of variance of individual IOP changes (DIOP or IOP at inclusion
in the study minus IOP at diagnosis) or of relative IOP changes (DIOP variation divided by
either IOP at diagnosis or initial IOP) was performed either directly or by introduction, as
covariate, of either IOP at diagnosis or mean IOP.

kin et al. 1997). Of additional interest to pathological
processes at the back of the eye, the E4 allele of APOE
protein has been associated with an increased risk of
age-related macular degeneration (Klaver et al. 1998;
Souied et al. 1998).

The APOE(�427) SNP and the e2/e3/e4 allele system
did not affect the clinical parameters listed in table 2 (data
not shown), despite linkage disequilibrium (Fullerton et
al. 2000; Martin et al. 2000; Nickerson et al. 2000). How-
ever, the APOE(�491T) allele was associated with a
higher IOP at diagnosis ( ) (table 2). This appearedP p .01
noteworthy, because we have reported elsewhere that an
allele of an SNP in the promoter of the MYOC gene
(MYOC �1000G, also designated as MYOC.mt1) was
associated with higher IOP at inclusion in the study and
with a lack of IOP lowering between diagnosis and the
time of the study (Colomb et al. 2001). We therefore
reevaluated the effect of MYOC.mt1 on individual
changes in IOP during the period from diagnosis to in-
clusion in the study, also taking into account the influence
of APOE(�491T). This analysis was performed with a
three-factor ANOVA, including a repeated-measures fac-
tor (“within-subject” variation of IOP, which is also de-
scribed as “individual change in IOP” [DIOP]), and
MYOC.mt1 and APOE(�491T) as independent (“be-
tween-groups”) factors. IOPs at diagnosis and at inclusion

in the study were not correlated, and DIOP was normally
distributed. In the whole group of patients, as expected,
the between-subjects variation of IOP was highly signif-
icant ( ), reflecting overall efficient IOP�12P p 1 # 10
lowering in treated patients. The significance level of the
effect of APOE(�491T) was increased ( ). AsP p .0004
we reported elsewhere, the effect of MYOC.mt1 was also
significant ( ) (Colomb et al. 2001). Moreover,P p .001
there was an interaction between both genetic markers
( ).P p .012

Figure 1 shows the frequency histograms of the dis-
tributions of DIOP and relative DIOP (i.e., DIOP divided
by IOP at diagnosis), grouped according to the four SNP
combinations. Table 3 shows the means and standard
deviations in the same genetic groups for these two var-
iables and also for the IOPs at diagnosis and at inclusion
in the study. The individual changes in IOP were sig-
nificant in all patient groups, except in those that were
positive for both MYOC.mt1 and APOE(�491T), as
shown by post hoc tests and also by the nonparamet-
ric Wilcoxon matched-pairs test (table 3). In other
words, the treatment protocols used between diagnosis
and the time of the study failed to decrease IOP signif-
icantly in patients who carried both MYOC.mt1 and
APOE(�491T). By several criteria, the patients who car-
ried both MYOC.mt1 and APOE(�491T) did not differ
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from the other patients included in the study. In partic-
ular, their age at diagnosis and the time between the
diagnosis and the inclusion in the study were not dif-
ferent. The patients had received an appropriate treat-
ment, including a topical b-blocker and a cholinomi-
metic agent, an inhibitor of carbonic anhydrase (two
patients), and surgery (two patients). Therefore, it does
not seem that the patients had been undertreated. Their
IOP levels, however, remained well above 20 mmHg. In
contrast, and as reported elsewhere (Colomb et al.
2001), the decrease of IOP in patients who did not carry
the MYOC.mt1 polymorphism was very significant, and
the decline in IOP was 130%, resulting in mean levels
!20 mmHg. Subjects who carried MYOC.mt1 but not
APOE(�491T) had an intermediate status. Their final
IOP level was, on average, 120 mmHg, and their relative
decrease in IOP was less pronounced than that of pa-
tients who were negative for MYOC.mt1 ( ). Be-P p .04
cause the magnitude of DIOP is correlated with the IOP
levels, the effect of genetic markers on DIOP and on
relative DIOP was reanalyzed, introducing the IOP at
diagnosis, or alternatively, the mean of IOPs at diagnosis
and at inclusion in the study, as covariates. As shown
in table 4, this analysis of covariance considerably in-
creased the power to detect the effects of MYOC.mt1
and APOE(�491T). The interaction term also became
highly significant.

These findings extend and refine our previous obser-
vation of an association of MYOC.mt1 with resistance
to IOP control, and they strengthen the idea that this
resistance probably has a genetic basis. At present, it
cannot be determined whether poor IOP control reflects
an intrinsic evolution of the pathogenic process or a
failure of the treatments, which primarily included top-
ical b-blockers, with or without cholinomimetic agents.
Knowledge that a patient is likely to show resistance to
IOP-lowering treatment should nevertheless improve
management of his or her disease.

As mentioned above, IOP elevation does not fully
explain glaucomatous optic neuropathy. In this regard,
our initial observation of the APOE-promoter var-
iant deserves final emphasis. The individual effect of
APOE(�219) SNP on optic nerve damage parameters
potentially provides a first genetic basis for the lack of
good correlation between IOP level and optic nerve dam-
age in patients with POAG and in subjects with ocular
hypertension (Quigley et al. 1994; Drance 1997; Mar-
tinez-Bello et al. 2000). At the molecular level, both
APOE(�219) and (�491) SNP, but not APOE(�427),
were shown to alter transcriptional activity of the APOE
gene, using promoter activity and electrophoretic
mobility–shift assays (Artiga et al. 1998). A quantitative
analysis of APOE gene expression in the eye tissue of
patients with POAG would be helpful, in much the same
way as studies of APOE expression in the brains of pa-

tients with Alzheimer disease (Lambert et al. 1998). Our
present observation lends support to the hypothesis that
transcriptional regulation of APOE expression plays an
important role in pathogenesis, independently of alle-
lic forms of APOE protein (Theuns and van Broeckho-
ven 2000). What leads to a different effect of the two
SNPs at the clinical level—and that effect could depend
on the cell type or the tissue or, perhaps, on an inducing
stimulus—is also open to investigation.

Since the discovery of MYOC and the recognition that
the gene has implications for the phenotype and predis-
position of adult and juvenile forms of POAG, several
loci have been identified that may be related to this prev-
alent form of glaucoma, but none of the candidates have
been defined at the molecular level. Our data indicate
that APOE could be an additional important locus, in
which specific genetic alterations at the molecular level
are observed to modify the POAG phenotype. Altera-
tions in APOE might account also for the excess of hap-
lotype sharing among pairs of siblings with POAG,
which was previously detected on chromosome 19q after
a genome scan (Wiggs et al. 2000), and for the increased
frequency of glaucoma that was recently reported in pa-
tients with Alzheimer disease (Bayer et al. 2002). A mod-
ification of POAG phenotype by APOE is also consistent
with the ideas expressed elsewhere concerning early-
stage role(s) for cellular injury and/or inflammation-sig-
naling pathway in increases of IOP in POAG (Wang et
al. 2001). In addition, APOE’s interaction with the
MYOC(�1000G)-promoter SNP takes on a special sig-
nificance in light of the role of MYOC in regulation of
IOP at the level of the trabecular meshwork and of the
regulation of MYOC expression by oxidative stress (Po-
lansky et al. 1997, 2000; Tamm et al. 1999).

Thus, our findings point toward separate roles of
APOE in pathological processes in both the anterior and
posterior part of the eye of patients with glaucoma. The
identification of APOE as a new candidate gene that
influences important clinical parameters in POAG also
supports the importance of glaucoma research that fo-
cuses on the role of oxidative and other forms of stress
in the pathogenesis of the disease. More generally, our
study demonstrates the usefulness of a candidate-gene
approach based on SNPs and, whenever possible, on a
combinatorial, multivariate analysis of their modifying
effects on a complex trait. In the case of POAG, we are
left with important questions of gene interactions in-
volving the MYOC gene, as well as other genes that may
soon be identified in glaucoma.
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